FPGAs for HPC: Open Challenges for Infrastructure and System Operation FPGA & GPU: compensate with each other toward perfect HPC hardware solution

Taisuke Boku

Director, Center for Computational Sciences
University of Tsukuba
taisuke@ccs.tsukuba.ac.jp

FPGA in HPC

Goodness of recent FPGA for HPC

- True codesigning with applications (essential)
- Programmability improvement HLS (High Level Synthesis):
 OpenCL, C, C++
- High performance interconnect: ~100Gb (xn)
- Precision control is possible (ex. Al)
- Relatively low power

Problems

- Programmability: OpenCL is not enough, not efficient
- Low standard FLOPS: still cannot catch up to GPU
 - -> "never try what GPU works well on"
- Memory bandwidth: 1-gen older than high end CPU/GPU
 - -> be improved by HBM2 (Stratix10~)

BittWare 520N with Intel Stratix10 FPGA equipped with 4x 100Gbps optical interconnection interfaces

GPU vs FPGA as HPC solutions

device	GPU	FPGA
parallelization	SIMD (x multi-group)	pipeline (x multi-group)
standard FLOPS	4 4 4 1 1 1 1 1 1 1 1 1 1	(~100x pipeline)
conditional branch	(warp divergence)	(both direction)
memory	4 4 (HBM2e)	② (DDR)→ ╝ (HBM2)
interconnect	(via host facility)	(own optical links)
programming	(CUDA, OpenACC, OpenMP)	(HDL)→ⓒ (HLS)
controllability	(slave device of host CPU)	(autonomic)
HPC applications	(various fields)	(not much)

CHARM: Cooperative Heterogeneous Acceleration with Reconfigurable Multi-devices

Cygnus: world first multi-hybrid cluster with GPU+FPGA

Cygnus supercomputer at Center for Computational Sciences, Univ. of Tsukuba (2019~) 81 nodes in total including 32 "Albireo" nodes with GPU+FPGA (other "Deneb" nodes have GPU only)

Single node configuration (Albireo)

- All nides in Cygnus are equipped with both IB EDR and FPGA-direct network
- Some nodes (Albireo) are equipped with both FPGAs and GPUs, and other nodes (Deneb) are with GPUs only
- GPU: NVIDIA V100 x4
 FPGA: Intel Stratix10 x2

100Gbps x4 **FPGA** optical network

Current research around Cygnus

- FPGA-network: CIRCUS (Communication Integrated Reconfigurable CompUting System)
 - direct interconnect facility among FPGA boards by multi-dimensional optical link (~100Gps) with router and OpenCL-ready API
 - pipelining all computation and communication seamlessly
- GPU-FPGA DMA: kicked by FPGA (without CPU)
 - PCle-protocol base DMA engine to reduce multi-device high speed data transfer
- Programming: MHOAT (Multi-Hetero OpenACC Translator)
 - breaking single OpenACC code for multi-de vices (GPU + FPGA) for each compiler
 - FPGA: OpenACC -> OpenCL -> aocx (by OpenARC research compiler by ORNL)
 - GPU: OpenACC -> NVPTX (PGI compiler)
- Appllication: ARGOT, application on astrophysics for early-universe object generation
 - two main parts are executed by GPU and FPGA

CIRCUS performance

Throughput(1hop~7hops)

Evaluated on up to 8 Bittware 520N FPGA boards in Cygnus supercomputer at CCS, University of Tsukuba [14] [14]: N. Fujita, et al., "Performance Evaluation of Pipelined Communication Combined with Computation in OpenCL Programming

Bandwidth of GPU-FPGA DMA

Data size: 4 ~ 2G Bytes (PCIe gen3x8*: 7.8GB/s peak)

* due to Intel FPGA BSP limitation

GPU-only vs GPU-FPGA coworking on astrophysics simulation ARGOT

Single node GPU (V100) + FPGA (Stratix10) evaluation on Cygnus R. Kobayashi, et. al., "Accelerating Radiative Transfer Simulation with GPU-FPGA Cooperative Computation", ASAP2020, Jul. 2020

Topics for Discussion

- What are the most promising feature or advantages of present or future HPC using FPGAs?
 - ⇒ multi-hetero solution, not FPGA stand-alone but coupling with other accelerators (GPUs) for perfect acceleration
- What technology is missing in infrastructure and operation of HPC systems using FPGAs?
 - ⇒ programming framework to release users from tough low-level programming, keeping a certain efficiency : ex. HLS or DSL ?
- How can we or should we tackle the above challenge in the community with academia and industries?
 - ⇒ true codesigning with application users, open source facilities

CFP for HPC FPGA Workshop 2021 (Cluster2021)

https://sites.google.com/view/hpcfpga2021/

- HPC FPGA Workshop 2021 in IEEE Cluster 2021 (Sep. 7th, 2021, virtual)
 - topic: FPGA for HPC (exactly with same as this session!)
 - any hardware, software, middleware, application on FPGA utilization toward HPC
 - proceedings will be published as IEEE Cluster2021 workshop volume
- Important dates
 - paper submission due: June 25th ⇒ to be extended ???
 - acceptance notification: July 19th
 - camera ready due: July 30th
 - workshop: September 7th
- Organization
 - Taisuke Boku (chair), Martin Herbordt (PC chair), Franck Cappello, Kentaro Sano