
A Sorting Library for FPGA
Implementation in OpenCL

Programming
Ryohei Kobayashi∗†, Kento Miura†, Norihisa Fujita∗†, Taisuke Boku∗†, and Toshiyuki Amagasa∗†

∗Center for Computational Sciences,
†Graduate School of Systems and Information Engineering,

University of Tsukuba, Japan

HEART 2021
International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies

Monday, 21 June, 2021

OpenCL programming model for FPGAs

lenabling implementation of FPGA
applications without the HDL
ØPros

ü hiding from the user the
fundamental parts of FPGA
implementation (PCIe, DDR, etc.)
• All-in-one dev. environment

ØCons
ü limited in their expressiveness

• Programming is easy, but
optimization is not

ü suffering from place and route
problems that limit the maximum
frequency

1

__kernel void vecadd
(__global float *a,
__global float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

int main(int argc, char *argv[]) {
init();
clEnqueueWriteBuffer(...);
clEnqueueNDRangeKernel(...,vecadd,...);
clEnqueueReadBuffer(...);
display_result(...);
return 0;

}

x86 host PC

FPGA
accelerator

OpenCL host code OpenCL kernel code

Intel
Offline
Compiler

Standard
C

Compiler
Verilog HDL
Files

aocxexe

PCIe

Intel FPGA SDK for OpenCL’s programming model

What we are aiming is...

lto optimize general-purpose computation kernels for practical
application development for FPGAs

and
lto make them available to users

lRelated work: OpenCL implementation of matrix multiplication [2]
Øassuming that it could serve as a building block for algorithms that are built
upon the base functionality of matrix multiplications.

2[2]: P. Gorlani et al., “OpenCL Implementation of Cannon's Matrix Multiplication Algorithm on Intel Stratix 10 FPGAs”, ICFPT19, pp.99-107

Target kernel: sorting

lSorting is everywhere
Øbasic arithmetic operation

ü SNS
üGene analysis
üDatabase
ü Etc...

lOur proposal
ØProviding a sorting library for FPGA implementation in OpenCL programming

3

SNS Distributed computing frameworksGene analysis

database N body problem

Reference network

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

produces sorted
data values

merges chunks of sorted data values merges chunks generated by
each virtual merge sorter tree

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

#include "fpga_sort.h"

__kernel void fpga_sort_test(
__global uint *restrict tmp,
__global uint *restrict src,
const uint numdata,
__global uint *restrict ret

)
{

// Do sort
*ret = fpga_sort(tmp, src, numdata);

}

1
2
3
4
5
6
7
8
9
10
11
12

sorting engine implemented in HDLOpenCL kernel code with sorting function

Batcher’s Odd-Even Sorting Network

lOutput sorted values in pipeline manner
Øtwo-stage pipelined CAE (Compare-and-exchange) units are used

ü critical path: one comparator
→ increasing the operating frequency

4

IN

Stage

OUT

A pipelined CAE unit

≤

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

produces sorted
data values

merges chunks of sorted data values merges chunks generated by
each virtual merge sorter tree

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

A pipelined Batcher’s odd-even sorting network with 8 inputs and 8 outputs
(the width of the sorting network is parameterized)

High-bandwidth Merge Sorter Tree [7]

lMerging sorted values with a throughput of a maximum of N data
values
Ø In this figure, N is 8

5

8V-merge logic

4V-merge
logic

4V-merge
logic

a0
a1
a2
a3

a4
a5
a6
a7

…
…
…
…

b0
b1
b2
b3

b4
b5
b6
b7

…
…
…
…

Selector
Logic

FIFOA

FIFOB
BOEMR2

R1

update

BOEMShift register

IN OUT

A pipelined CAE unit

≤

BOEM:
Batcher’s odd-even merger

4V-merge logic

2V-merge
logic

2V-merge
logic

2V-merge
logic

2V-merge
logic

V

V

V

V

V

V

V

V

8V

2V

2V

2V

2V

2V

2V

2V

2V
2V

2V

2V

2V 4V

4V

4V

4V

4V

4V 8V

8V

Value coupler

Value coupler

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

produces sorted
data values

merges chunks of sorted data values merges chunks generated by
each virtual merge sorter tree

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

[7]: M. Saitoh et al., “Very Massive Hardware Merge Sorter”,
ICFPT18, pp.86-93

A high-bandwidth merge sorter tree with 8 input ports
(the number of input ports is parameterized)

Issue of High-bandwidth Merge Sorter Tree

lAs the number of input ports
of the tree is increased, the
hardware resource usage
increases linearly
Øthe size of the tree that can be
implemented in an FPGA is
limited to a certain extent

Øthe number of sorted data
values in the output data stream
generated by passing through
the tree does not scale

6

8V-merge logic

4V-merge
logic

4V-merge
logic

a0
a1
a2
a3

a4
a5
a6
a7

…
…
…
…

b0
b1
b2
b3

b4
b5
b6
b7

…
…
…
…

Selector
Logic

FIFOA

FIFOB
BOEMR2

R1

update

BOEMShift register

IN OUT

A pipelined CAE unit

≤

BOEM:
Batcher’s odd-even merger

4V-merge logic

2V-merge
logic

2V-merge
logic

2V-merge
logic

2V-merge
logic

V

V

V

V

V

V

V

V

8V

2V

2V

2V

2V

2V

2V

2V

2V
2V

2V

2V

2V 4V

4V

4V

4V

4V

4V 8V

8V

Value coupler

Value coupler

Solution
connecting a merge sorter tree with wide input width to each
input port of the high-bandwidth merge sorter tree
→ a merged sort tree that has both high throughput and wide input can be built

Building a merge sorter tree with wide input width

lSolution: Virtual Merge Sorter Tree [9]
Øplacing only one CAS (Compare
-and-select) unit in each stage

Ø Integrating the FIFOs into a single
buffer layer implemented in BlockRAM

lHow it can be done?

7

CAS
CAS

CAS

CAS
CAS

CAS

CAS

request

Buffer layer

2 2

1

3

5

CAS
CAS

CAS

10

70

80

2 2

5

3

1

CAS
CAS

CAS

10

70

80

11

82

2

5 3

2

1

CAS
CAS

CAS

10

70

80

5 3

2

2
CAS

CAS

CAS

10

70

80

11

82
5 3

2

CAS
CAS

CAS

5

3

CAS
CAS

CAS

24

70

81

34

82

21

13

11

82

81

1

3

Cycle N Cycle N+1 Cycle N+2

Cycle N+3 Cycle N+4 Cycle N+5

1323

80

1323

70

81

82

80

1323

24
11 5

1110
33 2

10
11

2

2

5

1

2

2

81

10

70

Hardware-efficient implementation

In the traditional merge sorter tree, the CAS
unit located at the root selects and outputs
only one value on either side at a time.

↓
Therefore, in each stage of the tree, only
one CAS unit is active as well as one FIFO’s
dequeue request and one FIFO’s enqueue
request, which is highlighted in the figure

A traditional merge sorter tree A virtual merge sorter tree
[9]: K. Manev et al., “Large Utility Sorting on FPGAs”,
ICFPT18, pp.334‒337

Virtual Merge Sorter Tree [9]’s issue

lOperating frequency is too low
Ø less than half that of the high-bandwidth merge sorter

lOur solution: A multi-cycle virtual merge sorter tree
Øoutputs N data values per N cycles (throughput is same as [9])
Øcritical path: one comparator
→ increasing the operating frequency compared to [9]

8

Buffer layer

BOEM

Logical
FIFOs
(B)

Logical
FIFOs
(A)

Feedback
memory

≤
BOEM

Logical
FIFOs
(B)

Logical
FIFOs
(A)

Feedback
memory

≤

Buffer layer Buffer layer

BOEM

Logical
FIFOs
(B)

Logical
FIFOs
(A)

Feedback
memory

≤

Barrel shifter

Data path for a data value

Data path for N data values

Stage 0 (Root)Stage 1Stage 2

the performance of the high-bandwidth merge sorter tree cannot
be maximized by simply connecting the virtual merge sorter tree

Not good...

[9]: K. Manev et al., “Large Utility Sorting on FPGAs”, ICFPT18, pp.334‒337

Sorting Engine’s Behavior

lExample: sorting of 2,048 data values
Øthe width of the sorting network, number of leaves in the virtual merge
sorter tree, and number of input ports in the high-bandwidth merge sorter
tree to be 8, 4, and 4

9

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

2,048 unsorted data values

read out sequentially

produces sorted
data values

IN

Stage

OUT

A pipelined CAE unit

≤

Sorting Engine’s Behavior

10

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

2,048 unsorted data values

read out sequentially write back sequentially

merges chunks of sorted data values merges chunks generated by
each virtual merge sorter tree

Sorting Engine’s Behavior

11

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

2,048 unsorted data values 128 sorted data values

merged at 0 merged at 1 merged at 2 merged at 3

merges chunks of sorted data values
again

Sorting Engine’s Behavior

12

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

2,048 unsorted data values

write back sequentially

128 sorted data values

merged at 0 merged at 1 merged at 2 merged at 3

merges chunks generated by
each virtual merge sorter tree

again

Theoretical performance

l# of pass: ⌈logKxE(N/P)⌉
ØW: the number of leaves in the virtual
merge sorter tree

ØE: the number of input ports in the
high-bandwidth merge sorter

ØN: the number of data values to be
sorted

ØP: the width of the sorting network
lExample: sorting 2,048 data values

ØW = 4，E = 4, N = 2048, P = 8
ü # of pass to be 2

lThroughput: E x B x F / (# of pass)
[Byte / s]
ØB: data size of a data value
ØF: Operating Frequency

13

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

P EW

Creating an OpenCL library for data sorting

14

<RTL_SPEC>
<FUNCTION name="fpga_sort" module="fpga_sort">

<ATTRIBUTES>
<IS_STALL_FREE value="no"/>
<IS_FIXED_LATENCY value="no"/>
<EXPECTED_LATENCY value="10"/>
<CAPACITY value="1" />
<HAS_SIDE_EFFECTS value="yes"/>
<ALLOW_MERGING value="no"/>
<!-- memory access parameters -->
<PARAMETER name="MAXBURST_LOG" value="4"/>
<PARAMETER name="WRITENUM_SIZE" value="5"/>
<PARAMETER name="DRAM_ADDRSPACE" value="64"/>
<PARAMETER name="DRAM_DATAWIDTH" value="512"/>
<!-- parameters for hybrid sorter's configuration -->
<PARAMETER name="W_LOG" value="2"/>
<PARAMETER name="P_LOG" value="3"/>
<PARAMETER name="E_LOG" value="2"/>…

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

2P_LOG 2W_LOG 2E_LOG

fpga_sort.xml aoc -c fpga_sort.aoco
aocl
library
create

fpga_sort.aoclib

OpenCL
Library
(containing
sort func.)

specifying sorting engine’s configuration

Overview of OpenCL library creation that contains the sorting function

Intel FPGA SDK for OpenCL programming model
with our sorting library

15

#include "fpga_sort.h"

__kernel void fpga_sort_test(
__global uint *restrict tmp,
__global uint *restrict src,
const uint numdata,
__global uint *restrict ret

)
{

// Do sort
*ret = fpga_sort(tmp, src, numdata);

}

1
2
3
4
5
6
7
8
9
10
11
12

OpenCL kernel code with sorting function

initial pass?

High-bandwidth
merge sorter tree

Memory controller
Write buffer

FPGA

External memory (DRAM)

Sorting
Network

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

Virtual
merge sorter tree

0

1

2

3

src[]

read out sequentially

tmp[]

FPGA
accelerator

Intel
Offline
Compiler

Verilog HDL
Files

aocx

OpenCL
kernel code

Kernel

Interconnect

Memory
Controller

PCIe
Controller

Driver

FPGA

Host Application

External
Memory

Host PC

Helper function in
Verilog HDL

Only memory accesses
are available from the
helper function

Helper func
in Verilog
HDL

OpenCL
Library
(containing
sort func.)

Sorting
engine

Compilation flow Schematic of the Intel FPGA
SDK for OpenCL platform

BSP

Evaluation testbed

lPre-PACS version X (PPX)
Øworking at Center for Computational Sciences, University of Tsukuba.

16

A computation node of PPX

1 010
1

���0

PCIe

00

QPI

Hardware specification
CPU Intel Xeon E5-2690 v4 x2
Host Memory DDR4-2400 8GB x8
GPU NVIDIA Tesla V100 (PCIe Gen3 x16)
GPU Memory 32 GiB CoWoS HBM2

@ 900 GB/s with ECC
FPGA BittWare 520N

(Intel Stratix 10 1SG280HN2F43E2VG)
FPGA Memory DDR4 2400MHz 32 GB (8GB × 4)

Software specification
OS CentOS 7.3
Host Compiler Intel C++ Compiler 18.0.1
GPU Compiler CUDA 9.2.148
OpenCL SDK Intel FPGA SDK for OpenCL 19.4.0 Build

64 Pro Edition

Performance comparison to OpenCL kernel for sorting

17

lFor comparison, we restructured merge sort algorithm [12] for
2^29 data elements (data: 64 bit [32-bit key, 32-bit payload])

lSorting engine’s configuration: W = 4, P = 8, E = 4

lOperating frequency: 309.98 MHz
ØCritical path: a control logic for global memory interleave

ü can be removed by specifying -no-interleaving=DDR -global-ring at compilation

→ 378.21 MHz (380 MHz is the upper limit of the achievable operating freq.)

[12]: R. Kastner, J. Matai, and S. Neuendorffer. Parallel Programming for FPGAs. ArXiv e-prints, May 2018.

three orders of magnitude greater

the sorting performance of the library is further improved

Comparison result. data: 64 bit (32-bit key, 32-bit payload)

Performance comparison between CPU and GPU

lCPU: OpenMP-versioned radix sort based on [14]
lGPU: Thrust library (CUDA 9.2.148)
lSorting engine’s configuration (FPGA) : W = 64, P = 32, E = 4

18

0

5

10

15

20

25

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Th
ro
ug
hp
ut
 [G
B/
s]

Data values in log2 scale

Intel Xeon E5-2690 v4
NVIDIA Tesla V100
FPGA
FPGA (peak)

Comparison of sorting performances based on data size
Data: 64 bit (32-bit key, 32-bit payload)

H
ig
he
r i
s
Be
tt
er

0
1
2
3
4
5
6
7
8
9

13 14 15 16
Th
ro
ug
hp
ut
 [G
B/
s]

Data values in log2 scale

Intel Xeon E5-2690 v4
NVIDIA Tesla V100
FPGA
FPGA (peak)

Memory access overhead FPGA: pipelined exec.
CPU/GPU: insufficient parallelism

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
of data elements

of data elements
213 214 215 216

[14]: Nadathur Satish et al., “Fast Sort on CPUs and GPUs: A case
for bandwidth oblivious SIMD Sort” SIGMOD10, pp.351‒362

The ability to process small problem sizes

lnecessary to achieve strong scaling for FPGA-centric applications
Ø# of FPGAs is increased → problem size per FPGA becomes smaller

lsorting is required in nearly all algorithms,
particularly in data intensive applications
Østatistics (percentile)
Øsearch (k-nearest neighbor query)
Ø index construction (inverted index)
Øgraph processing
Øetc...

19

app app

app app

Our study is worthwhile for developing a hardware logic
to accelerate that fundamental process and enabling its
ease of use as a library.

Conclusion

lA sorting library that can be used with the OpenCL programming
model for FPGA
Øwhich is built by combining the three hardware sorting algorithms.

lOur sorting library consumes more than twice the overall hardware
resources compared to a merge sort restructured for the OpenCL
programming model for FPGA, but its operating frequency is 1.09x
higher and its sorting throughput is three orders of magnitude
better

lWe also derived the performance model to estimate for data
sorting and application developers can determine the optimal con-
figuration of the sorting engine, taking into account the amount of
target FPGA resources and the required sorting performance

20

