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OpenCL programming model for FPGAs

lenabling implementation of FPGA 
applications without the HDL
ØPros

ü hiding from the user the 
fundamental parts of FPGA 
implementation (PCIe, DDR, etc.)
• All-in-one dev. environment

ØCons
ü limited in their expressiveness

• Programming is easy, but 
optimization is not

ü suffering from place and route 
problems that limit the maximum 
frequency
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__kernel void vecadd
(__global float *a,
__global float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

int main(int argc, char *argv[]) {
init();
clEnqueueWriteBuffer(...);
clEnqueueNDRangeKernel(...,vecadd,...);
clEnqueueReadBuffer(...);
display_result(...);
return 0;

}
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Intel FPGA SDK for OpenCL’s programming model



What we are aiming is...

lto optimize general-purpose computation kernels for practical 
application development for FPGAs

and
lto make them available to users

lRelated work: OpenCL implementation of matrix multiplication [2]
Øassuming that it could serve as a building block for algorithms that are built 
upon the base functionality of matrix multiplications.

2[2]: P. Gorlani et al., “OpenCL Implementation of Cannon's Matrix Multiplication Algorithm on Intel Stratix 10 FPGAs”, ICFPT19, pp.99-107



Target kernel: sorting

lSorting is everywhere
Øbasic arithmetic operation

ü SNS
üGene analysis
üDatabase
ü Etc...

lOur proposal
ØProviding a sorting library for FPGA implementation in OpenCL programming
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#include "fpga_sort.h"

__kernel void fpga_sort_test(
__global uint *restrict tmp,
__global uint *restrict src,
const uint numdata,
__global uint *restrict ret

)
{

// Do sort
*ret = fpga_sort(tmp, src, numdata);

}
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sorting engine implemented in HDLOpenCL kernel code with sorting function



Batcher’s Odd-Even Sorting Network

lOutput sorted values in pipeline manner
Øtwo-stage pipelined CAE (Compare-and-exchange) units are used

ü critical path: one comparator 
→ increasing the operating frequency
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A pipelined Batcher’s odd-even sorting network with 8 inputs and 8 outputs
(the width of the sorting network is parameterized)



High-bandwidth Merge Sorter Tree [7]

lMerging sorted values with a throughput of a maximum of N data 
values
Ø In this figure, N is 8
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[7]: M. Saitoh et al., “Very Massive Hardware Merge Sorter”, 
ICFPT18, pp.86-93

A high-bandwidth merge sorter tree with 8 input ports
(the number of input ports is parameterized)



Issue of High-bandwidth Merge Sorter Tree 

lAs the number of input ports 
of the tree is increased, the 
hardware resource usage 
increases linearly
Øthe size of the tree that can be 
implemented in an FPGA is 
limited to a certain extent

Øthe number of sorted data 
values in the output data stream 
generated by passing through 
the tree does not scale
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Solution
connecting a merge sorter tree with wide input width to each 
input port of the high-bandwidth merge sorter tree
→ a merged sort tree that has both high throughput and wide input can be built



Building a merge sorter tree with wide input width 

lSolution: Virtual Merge Sorter Tree [9]
Øplacing only one CAS (Compare
-and-select) unit in each stage

Ø Integrating the FIFOs into a single
buffer layer implemented in BlockRAM

lHow it can be done?
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Hardware-efficient implementation

In the traditional merge sorter tree, the CAS 
unit located at the root selects and outputs 
only one value on either side at a time. 

↓
Therefore, in each stage of the tree, only 
one CAS unit is active as well as one FIFO’s 
dequeue request and one FIFO’s enqueue 
request, which is highlighted in the figure

A traditional merge sorter tree A virtual merge sorter tree
[9]: K. Manev et al., “Large Utility Sorting on FPGAs”, 
ICFPT18, pp.334‒337



Virtual Merge Sorter Tree [9]’s issue

lOperating frequency is too low
Ø less than half that of the high-bandwidth merge sorter

lOur solution: A multi-cycle virtual merge sorter tree
Øoutputs N data values per N cycles (throughput is same as [9])
Øcritical path: one comparator
→ increasing the operating frequency compared to [9]
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the performance of the high-bandwidth merge sorter tree cannot 
be maximized by simply connecting the virtual merge sorter tree

Not good...

[9]: K. Manev et al., “Large Utility Sorting on FPGAs”, ICFPT18, pp.334‒337



Sorting Engine’s Behavior

lExample: sorting of 2,048 data values
Øthe width of the sorting network, number of leaves in the virtual merge 
sorter tree, and number of input ports in the high-bandwidth merge sorter 
tree to be 8, 4, and 4
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Sorting Engine’s Behavior
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Sorting Engine’s Behavior
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Sorting Engine’s Behavior
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Theoretical performance

l# of pass: ⌈logKxE(N/P)⌉
ØW: the number of leaves in the virtual 
merge sorter tree

ØE: the number of input ports in the 
high-bandwidth merge sorter

ØN: the number of data values to be 
sorted

ØP: the width of the sorting network
lExample: sorting 2,048 data values

ØW = 4，E = 4, N = 2048, P = 8
ü # of pass to be 2

lThroughput: E x B x F / (# of pass) 
[Byte / s ]
ØB: data size of a data value
ØF: Operating Frequency
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Creating an OpenCL library for data sorting
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<RTL_SPEC>
<FUNCTION name="fpga_sort" module="fpga_sort">

<ATTRIBUTES>
<IS_STALL_FREE value="no"/>
<IS_FIXED_LATENCY value="no"/>
<EXPECTED_LATENCY value="10"/>
<CAPACITY value="1" />
<HAS_SIDE_EFFECTS value="yes"/>
<ALLOW_MERGING value="no"/>
<!-- memory access parameters -->
<PARAMETER name="MAXBURST_LOG" value="4"/>
<PARAMETER name="WRITENUM_SIZE" value="5"/>
<PARAMETER name="DRAM_ADDRSPACE" value="64"/>
<PARAMETER name="DRAM_DATAWIDTH" value="512"/>
<!-- parameters for hybrid sorter's configuration -->
<PARAMETER name="W_LOG" value="2"/>
<PARAMETER name="P_LOG" value="3"/>
<PARAMETER name="E_LOG" value="2"/>…
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Intel FPGA SDK for OpenCL programming model 
with our sorting library
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#include "fpga_sort.h"

__kernel void fpga_sort_test(
__global uint *restrict tmp,
__global uint *restrict src,
const uint numdata,
__global uint *restrict ret

)
{

// Do sort
*ret = fpga_sort(tmp, src, numdata);

}
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Evaluation testbed

lPre-PACS version X (PPX)
Øworking at Center for Computational Sciences, University of Tsukuba.
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Hardware specification
CPU Intel Xeon E5-2690 v4 x2
Host Memory DDR4-2400 8GB x8
GPU NVIDIA Tesla V100 (PCIe Gen3 x16)
GPU Memory 32 GiB CoWoS HBM2 

@ 900 GB/s with ECC
FPGA BittWare 520N 

(Intel Stratix 10 1SG280HN2F43E2VG)
FPGA Memory DDR4 2400MHz 32 GB (8GB × 4)

Software specification
OS CentOS 7.3
Host Compiler Intel C++ Compiler 18.0.1
GPU Compiler CUDA 9.2.148
OpenCL SDK Intel FPGA SDK for OpenCL 19.4.0 Build 

64 Pro Edition



Performance comparison to OpenCL kernel for sorting
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lFor comparison, we restructured merge sort algorithm [12] for 
2^29 data elements (data: 64 bit [32-bit key, 32-bit payload])

lSorting engine’s configuration: W = 4, P = 8, E = 4

lOperating frequency: 309.98 MHz
ØCritical path: a control logic for global memory interleave

ü can be removed by specifying -no-interleaving=DDR -global-ring at compilation

→ 378.21 MHz (380 MHz is the upper limit of the achievable operating freq.)

[12]: R. Kastner, J. Matai, and S. Neuendorffer. Parallel Programming for FPGAs. ArXiv e-prints, May 2018.

three orders of magnitude greater

the sorting performance of the library is further improved

Comparison result. data: 64 bit (32-bit key, 32-bit payload)



Performance comparison between CPU and GPU

lCPU: OpenMP-versioned radix sort based on [14]
lGPU: Thrust library (CUDA 9.2.148)
lSorting engine’s configuration (FPGA) : W = 64, P = 32, E = 4
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[14]: Nadathur Satish et al., “Fast Sort on CPUs and GPUs: A case 
for bandwidth oblivious SIMD Sort” SIGMOD10, pp.351‒362



The ability to process small problem sizes

lnecessary to achieve strong scaling for FPGA-centric applications
Ø# of FPGAs is increased → problem size per FPGA becomes smaller

lsorting is required in nearly all algorithms, 
particularly in data intensive applications
Østatistics (percentile)
Øsearch (k-nearest neighbor query)
Ø index construction (inverted index) 
Øgraph processing
Øetc...
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Our study is worthwhile for developing a hardware logic 
to accelerate that fundamental process and enabling its 
ease of use as a library.



Conclusion

lA sorting library that can be used with the OpenCL programming 
model for FPGA
Øwhich is built by combining the three hardware sorting algorithms. 

lOur sorting library consumes more than twice the overall hardware 
resources compared to a merge sort restructured for the OpenCL 
programming model for FPGA, but its operating frequency is 1.09x 
higher and its sorting throughput is three orders of magnitude 
better 

lWe also derived the performance model to estimate for data 
sorting and application developers can determine the optimal con-
figuration of the sorting engine, taking into account the amount of 
target FPGA resources and the required sorting performance
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