
StreamBrain
An HPC Framework for Brain-like Neural Networks on CPUs, GPUs, and FPGAs

1 KTH Royal Institute of Technology, Sweden

2 Stockholm University, Sweden

3 Lawrence Livermore National Laboratory, US

Artur Podobas1, Martin Svedin1, Steven W.D. Chien1, Ivy B. Peng3, Naresh

Balaji Ravichandran1, Pawel Herman1, Anders Lansner1,2, Stefano Markidis1

Introduction

• Surge in Machine Learning (ML) popularity

• Adoption in multiply scientific fields

• Many based on backpropagation

• Labeled data

• Supervised learning

• Minimize loss function

• Backpropagate errors

• Update gradients

• There exist other frameworks with mature theory

• One such example is Bayesian Confidence Propagation
Neural Network (BCPNN)

Page 1

Computer Science

AI FOR

SCIENCE

StreamBrain @ HEART’21Artur Podobas

Motivation

• Why explore alternative Deep-Learning strategies such as BCPNN?
1. BCPNN is brain-inspired → Gain insights into how we humans compute?

• Spiking and Non-Spiking formulations → Map to neuromorphic systems?

2. BCPNN supports supervised, semi-supervised, and unsupervised learning

• No need to have a labeled data

• Excellent for bringing order to seemingly un-labeled data

3. Learning rules are local

• BCPNN theory allow each unit (think: neuron) to be updated based only on local
state

• Can cater to extreme-scale parallelism

• Challenge: Currently, no easy-to-use or high-performance
implementation of BCPNN hard for non-experts to use

Page 2
StreamBrain @ HEART’21Artur Podobas

What is BCPNN?

Page 3Artur Podobas StreamBrain @ HEART’21

Bayesian Confidence Propagation Neural Network
(Part 1 of 3)

• Brain-like neural network framework

• Based on Hebbian learning and Bayes’
theorem1

• Two types of units:

• HyperColumn Units (HCUs)

• Main building block

• Captures and learns a certain variable/feature

• Contains multiple MCUs

• MiniColumn Units (MCUs)

• Models a certain instance of associated HCU’s variable
1 Learning representations in Bayesian

Confidence Propagation Neural Networks

Ravichandran et al., 2020

Page 4

HCU0

MCU0 MCU1 MCU2 MCU3

Image Source: Pixabay.com (creative commons)

StreamBrain @ HEART’21Artur Podobas

Bayesian Confidence Propagation Neural Network
(Part 2 of 3)

• Sample Network

1. Input layer

• Most often images

2. Hidden Layer

• Each HCU has a different receptive field

• “Looks” at different parts of the image

• Structural Plasticity

• Sparsity

• Can learn without supervision

3. Classification Layer

1. Classifies the data (e.g., types of image)

2. Train with supervision (or even with
Backprop Hybrid BCPNN+SGD
networks)

Page 5StreamBrain @ HEART’21Artur Podobas

Bayesian Confidence Propagation Neural Network
(Part 3 of 3)

• Example 3 HCUs hidden network
• The number “5” in the input layer

• Execution:
1. Initially receptive fields of HCUs

randomized (looks at random location
in input image)

2. As training continues, structural
plasticity teaches HCUs where in the
image to capture most information

3. Finally, we end up with three HCUs
capturing different aspects of the
input image.

• This is called structural plasticity

Page 6StreamBrain @ HEART’21Artur Podobas

StreamBrain

Page 7StreamBrain @ HEART’21Artur Podobas

StreamBrain
(Part 1 of 4)

• A high-performance DSL for
accessing and using BCPNN

• Simple, intuitive, easy-to-use
Keras-like interface

• Based on Python

• Multiple backends for High-
Performance Computing

• Supports batching

Page 8StreamBrain @ HEART’21Artur Podobas

Video of training BCPNN using StreamBrain.

StreamBrain
(Part 2 of 4)

• Python-based backend

• Leverages NumPy (and thus BLAS libraries
where available)

• Easy to integrate into existing ML pipelines

• OpenMP-based backend

• Used for performance-critical sections

• OpenMP 2.0+ directives

• Primarily data-parallel directives used

• Partially vectorized for AVX256/512

• MPI-based backend

• Data-parallelism

• Sub-batches per MPI process

• Intra-process parallelism using OpenMP

NumPY

OpenMP

S
tr

e
a
m

B
ra

in

CPU

MPI

Page 9StreamBrain @ HEART’21Artur Podobas

StreamBrain
(Part 3 of 4)

• CUDA-based version of the
entire pipeline

• Very high performance

• Both training and inference loop
on the GPU

• Reduce transfer overheads

• Support for modern Nvidia
GPUs

• Nvidia V100, and A100

NumPY

OpenMP

S
tr

e
a
m

B
ra

in

CPU

CUDAGPU

Page 10

MPI

StreamBrain @ HEART’21Artur Podobas

StreamBrain
(Part 4 of 4)

• Used to explore architectural design-
decisions

• Targets performance-critical StreamBrain
sections

• Described using Intel OpenCL HLS

• Support for different numerical
representations (through FLoPoCo1)

• IEEE-754 single-precision

• BrainFloat-16 (BF-16)

• But also BF-14,-15,-20,-24-,28

• Add/Sub, Multiplication, Division, Log

• Important to understand the impact of
numerical precision, especially for future
architectures!

NumPY

OpenMP

S
tr

e
a
m

B
ra

in

CPU

CUDAGPU

OpenCL HLSFPGA

1 Designing custom arithmetic data paths

with FloPoCo, Dinechi et al., 2011

Page 11

MPI

StreamBrain @ HEART’21Artur Podobas

Results

Page 12StreamBrain @ HEART’21Artur Podobas

Experimental Platform

• StreamBrain performance on:

• General-Purpose CPUs:

• Intel Xeon E5-2698e3, E5-2690v4, Gold 6132, Core i5-8400, AMD
Epyc

• Nvidia Volta-100 and Ampere-100

• Field-Programmable Gate Arrays (FPGAs, Stratix V)

• High-Performance Computing Systems

• KTH Beskow Cray XC40 Supercomputer

• HPC2N Kebnekaise (at Umeå University) Supercomputer

• Datasets used:

1. MNIST Data-set benchmark (28x28 black-white images)

2. STL-10 Data-set (96x96 RGB images)

• Network size: 3000 MCUs (# HCUs subject to optimization)

Figure src: http://clipart-library.com/race-car-cartoon-pictures.html

(Creative commons)

Page 13StreamBrain @ HEART’21Artur Podobas

http://clipart-library.com/race-car-cartoon-pictures.html

Results: MNIST performance
(Part 1 of 4)

1. Trains MNIST almost within ~10 seconds (fp32 faster than fp64)

2. Inference times reaches 350k Img/s.

3. Little difference in single vs. double-precision (both ~95% test accuracy).

4. Hybrid BCPNN + SGD yields correct 97.5%+ accuracy (in line with previous work)

5. Contrast: PyTorch (Backprop) on A100 to reach ~95.5% takes 30+ seconds; StreamBrain for the same accuracy
only ~10 seconds!

Page 14StreamBrain @ HEART’21Artur Podobas

Results: FPGAs and Numerical Representation
(Part 2 of 4)

• Can we go with a lower/smaller
numerical representation?

• Yes, we can:

• All the way to BF16

• BF15 degrades test accuracy to
~65%

• BF14 degrades it to chance (~10%)

• What happens?

Page 15StreamBrain @ HEART’21Artur Podobas

Results: FPGAs and Numerical Representation
(Part 2 of 4)

Page 15

IEEE 754 (single-precision, 32 bit)

HCUs

MCUs
StreamBrain @ HEART’21Artur Podobas

Results: FPGAs and Numerical Representation
(Part 2 of 4)

Page 15

BrainFloat 16 (16-bit)

HCUs

MCUs
StreamBrain @ HEART’21Artur Podobas

Results: FPGAs and Numerical Representation
(Part 2 of 4)

Page 15

”BrainFloat 15” (15-bit)

HCUs

MCUs StreamBrain @ HEART’21Artur Podobas

Results: FPGAs and Numerical Representation
(Part 2 of 4)

Page 15

”BrainFloat 14” (14-bit)

HCUs

MCUs StreamBrain @ HEART’21Artur Podobas

Results: FPGAs and Numerical Representation
(Part 2 of 4)

• Can we go with a lower/smaller
numerical representation?

• Yes, we can:
• All the way to BF16 (small degradation)

• BF15 degrades test accuracy to ~65%

• BF14 degrades it to chance (~10%)

• FPGA accelerator characteristics
• 200+ MHz frequency

• Smaller representation Less area used

• BCPNN capable of training with next-
gen hardware that supports reduced
precision

Page 15StreamBrain @ HEART’21Artur Podobas

Results: Performance on STL-10
(Part 3 of 4)

• First time STL-10 tested with
BCPNN

• Execution on Nvidia A100
• Compared to PyTorch using GPU with

similar MLP capacity network

• StreamBrain ~1.7x slower than
PyTorch

• Test accuracy of BCPNN slightly
worse than MLP (PyTorch)

• Requires further investigation

• Still far from Convolutional Neural
networks (90+%)

Page 16StreamBrain @ HEART’21Artur Podobas

Page 17

Results: Strong scaling STL-10
(Part 4 of 4)

• Early results on the MPI-backend

• Strong-scaling result on the two
HPC machines

• Beskow computer scales up to 8
nodes (5.25x speedup)

• Kebnekaise performs sub-
optimally

• Needs further investigation/scrutiny

StreamBrain @ HEART’21Artur Podobas

Future Work

• BCPNN with alternative number representations (or mixed!)

• UNUMs, Posits, Elias, etc.

• New types of layers and encodings to better capture, e.g., color
images

• Exploiting Sparsity

• BCPNN ample opportunity to reduce cost of data movement and
computation

• Extreme scalability

• Towards synchronous-free execution at the exascale

Page 18StreamBrain @ HEART’21Artur Podobas

Conclusion

• BCPNN an alternative to “traditional” Deep-Learning

• 95+% on MNIST; 97.5+% on mixed BCPNN+SGD

• StreamBrain a framework that allows high-performance exploration of BCPNN

• CPU, GPU, and FPGA backend

• Training and testing on larger input sets than before (STL-10 within minutes!)

• Trains MNIST within ~10 seconds

• StreamBrain used for architectural studies through FPGA

• BF16-capable without much performance degradation.

• How about Posits and other more exotic representations?

• Check out: https://github.com/KTH-HPC/StreamBrain

• Do you have a use-case that might benefit from StreamBrain / BCPNN?

• Contact podobas@kth.se

Page 18StreamBrain @ HEART’21Artur Podobas

https://github.com/KTH-HPC/StreamBrain

epigram-hs.eu

Thank you!

