

StreamBrain

An HPC Framework for Brain-like Neural Networks on CPUs, GPUs, and FPGAs

<u>Artur Podobas</u>¹, Martin Svedin¹, Steven W.D. Chien¹, Ivy B. Peng³, Naresh Balaji Ravichandran¹, Pawel Herman¹, Anders Lansner^{1,2}, Stefano Markidis¹

³ Lawrence Livermore National Laboratory, US

¹ KTH Royal Institute of Technology, Sweden

² Stockholm University, Sweden

Introduction

- Surge in Machine Learning (ML) popularity
- Adoption in multiply scientific fields
- Many based on backpropagation
 - Labeled data
 - Supervised learning
 - Minimize loss function
 - Backpropagate errors
 - Update gradients
- There exist other frameworks with mature theory
 - One such example is Bayesian Confidence Propagation Neural Network (BCPNN)

Motivation

- Why explore alternative Deep-Learning strategies such as BCPNN?
 - 1. BCPNN is brain-inspired → Gain insights into how we humans compute?
 - Spiking and Non-Spiking formulations → Map to neuromorphic systems?
 - 2. BCPNN supports supervised, semi-supervised, and unsupervised learning
 - No need to have a labeled data
 - Excellent for bringing order to seemingly un-labeled data
 - 3. <u>Learning rules are local</u>
 - BCPNN theory allow each unit (think: neuron) to be updated based only on local state
 - Can cater to extreme-scale parallelism
- Challenge: Currently, no easy-to-use or high-performance implementation of BCPNN ⇔ hard for non-experts to use

What is BCPNN?

Bayesian Confidence Propagation Neural Network (Part 1 of 3)

- Brain-like neural network framework
- Based on Hebbian learning and Bayes' theorem¹
- Two types of units:
 - HyperColumn Units (HCUs)
 - Main building block
 - Captures and learns a certain variable/feature Image Source: Pixabay.com (creative commons)
 - Contains multiple MCUs
 - MiniColumn Units (MCUs)
 - Models a certain instance of associated HCU's variable

¹ Learning representations in Bayesian Confidence Propagation Neural Networks Ravichandran et al., 2020 Bayesian Confidence Propagation Neural Network

(Part 2 of 3)

- Sample Network
 - 1. Input layer
 - Most often images
 - 2. Hidden Layer
 - Each HCU has a different receptive field
 - "Looks" at different parts of the image
 - Structural Plasticity
 - Sparsity
 - Can learn without supervision
 - 3. Classification Layer
 - 1. Classifies the data (e.g., types of image)
 - Train with supervision (or even with Backprop ⇔ Hybrid BCPNN+SGD networks)

Bayesian Confidence Propagation Neural Network (Part 3 of 3)

- Example 3 HCUs hidden network
 - The number "5" in the input layer
- Execution:
 - Initially receptive fields of HCUs randomized (looks at random location in input image)
 - 2. As training continues, structural plasticity teaches HCUs where in the image to capture most information
 - 3. Finally, we end up with three HCUs capturing different aspects of the input image.
- This is called structural plasticity

StreamBrain

StreamBrain (Part 1 of 4)

- A high-performance DSL for accessing and using BCPNN
- Simple, intuitive, easy-to-use Keras-like interface
- Based on Python
- Multiple backends for High-Performance Computing
- Supports batching

```
vSing FPGA backend.
Dataset: maist Batch size: 128 precision: <class 'numpy.float32'>
Layer : 1/2
Layer : 1/2
Epoch 1/60: 0%| | 0/469 [00:00<7, 7it/
Initializing OpenCL
Using platform: Intel(R) FPGA SDK for OpenCL(TM)'
Platform: 'Intel(R) FPGA SDK for OpenCL(TM)'
Flound: 1 devices
Name: deSnet a7 : Stratix V Reference Platform
Using platforam: both nacx
Reprogramming device [0] with handle 1
Epoch 1/60: 18%|
| 83/469 [00:05<00:17, 22.02it/
```

Video of training BCPNN using StreamBrain.

StreamBrain (Part 2 of 4)

- Python-based backend
 - Leverages NumPy (and thus BLAS libraries where available)
 - Easy to integrate into existing ML pipelines
- OpenMP-based backend
 - Used for performance-critical sections
 - OpenMP 2.0+ directives
 - Primarily data-parallel directives used
 - Partially vectorized for AVX256/512
- MPI-based backend
 - Data-parallelism
 - Sub-batches per MPI process
 - Intra-process parallelism using OpenMP

StreamBrain (Part 3 of 4)

- CUDA-based version of the entire pipeline
 - Very high performance
- Both training and inference loop on the GPU
 - Reduce transfer overheads
- Support for modern Nvidia GPUs
 - Nvidia V100, and A100

StreamBrain (Part 4 of 4)

- Used to explore architectural designdecisions
- Targets performance-critical StreamBrain sections
- Described using Intel OpenCL HLS
- Support for different numerical representations (through FLoPoCo¹)
 - IEEE-754 single-precision
 - BrainFloat-16 (BF-16)
 - But also BF-14,-15,-20,-24-,28
 - Add/Sub, Multiplication, Division, Log
- Important to understand the impact of numerical precision, especially for future architectures!

¹ Designing custom arithmetic data paths with FloPoCo. Dinechi et al., 2011

Results

Experimental Platform

- StreamBrain performance on:
- General-Purpose CPUs:
 - Intel Xeon E5-2698e3, E5-2690v4, Gold 6132, Core i5-8400, AMD Epyc
 - Nvidia Volta-100 and Ampere-100
 - Field-Programmable Gate Arrays (FPGAs, Stratix V)
 - High-Performance Computing Systems
 - KTH Beskow Cray XC40 Supercomputer
 - HPC2N Kebnekaise (at Umeå University) Supercomputer
- Datasets used:
 - 1. MNIST Data-set benchmark (28x28 black-white images)
 - 2. STL-10 Data-set (96x96 RGB images)
- Network size: 3000 MCUs (# HCUs subject to optimization)

Figure src: http://clipart-library.com/race-car-cartoon-pictures.html (Creative commons)

Results: MNIST performance (Part 1 of 4)

- Inference times reaches 350k Img/s.
- Little difference in single vs. double-precision (both ~95% test accuracy).
- Hybrid BCPNN + SGD yields correct 97.5%+ accuracy (in line with previous work)
- 5. Contrast: PyTorch (Backprop) on A100 to reach ~95.5% takes 30+ seconds; StreamBrain for the same accuracy only ~10 seconds!

 Artur Podobas

 StreamBrain @ ΗΕΔΡΤ'21

- Can we go with a lower/smaller numerical representation?
- Yes, we can:
 - All the way to BF16
 - BF15 degrades test accuracy to ~65%
 - BF14 degrades it to chance (~10%)
- What happens?

MCUs

IEEE 754 (single-precision, 32 bit)

StreamBrain @ HEART'21

BrainFloat 16 (16-bit)

"BrainFloat 15" (15-bit)

"BrainFloat 14" (14-bit)

HCUs

- Can we go with a lower/smaller numerical representation?
- Yes, we can:
 - All the way to BF16 (small degradation)
 - BF15 degrades test accuracy to ~65%
 - BF14 degrades it to chance (~10%)
- FPGA accelerator characteristics
 - 200+ MHz frequency
 - Smaller representation ⇔ Less area used
- BCPNN capable of training with nextgen hardware that supports reduced precision

Results: Performance on STL-10 (Part 3 of 4)

- First time STL-10 tested with BCPNN
- Execution on Nvidia A100
 - Compared to PyTorch using GPU with similar MLP capacity network
- StreamBrain ~1.7x slower than PyTorch
- Test accuracy of BCPNN slightly worse than MLP (PyTorch)
 - Requires further investigation
 - Still far from Convolutional Neural networks (90+%)

Results: Strong scaling STL-10 (Part 4 of 4)

- Early results on the MPI-backend
- Strong-scaling result on the two HPC machines
- Beskow computer scales up to 8 nodes (5.25x speedup)
- Kebnekaise performs suboptimally
 - Needs further investigation/scrutiny

Future Work

- BCPNN with alternative number representations (or mixed!)
 - UNUMs, Posits, Elias, etc.
- New types of layers and encodings to better capture, e.g., color images
- Exploiting Sparsity
 - BCPNN ample opportunity to reduce cost of data movement and computation
- Extreme scalability
 - Towards synchronous-free execution at the exascale

Conclusion

- BCPNN an alternative to "traditional" Deep-Learning
 - 95+% on MNIST; 97.5+% on mixed BCPNN+SGD
- StreamBrain a framework that allows high-performance exploration of BCPNN
 - CPU, GPU, and FPGA backend
 - Training and testing on larger input sets than before (STL-10 within minutes!)
 - Trains MNIST within ~10 seconds
- StreamBrain used for architectural studies through FPGA
 - BF16-capable without much performance degradation.
 - How about Posits and other more exotic representations?
- Check out: https://github.com/KTH-HPC/StreamBrain
- Do you have a use-case that might benefit from StreamBrain / BCPNN?
 - Contact podobas@kth.se

Thank you!

epigram-hs.eu

Horizon 2020 European Union funding for Research & Innovation