

Accelerating Matrix Processing for MIMO Systems

Jieming Xu (now at MathWorks) and Miriam Leeser
Department of Electrical and Computer Engineering
Northeastern University
Boston, MA

mel@coe.neu.edu

MathWorks®

Reconfigurable and GPU Computing Laboratory (RCL) https://www.northeastern.edu/rcl/

Publications

- Jieming Xu's PhD: Accelerating Matrix Processing for MIMO Systems. Available: https://repository.library.northeastern.edu/files/neu:m046v333b
- Mohamed, M., Handagala, S., Xu, J., Leeser, M. and Onabajo, M., 2020. Strategies and demonstration to support multiple wireless protocols with a single RF front-end. *IEEE* Wireless Communications, 27(3), pp.88-95.
- Xu, J. and Leeser, M., 2018, September. High-level and compact design of cross-channel LTE downlink channel encoder. In *International Conference on Cognitive Radio Oriented Wireless Networks* (pp. 15-24). Springer.

MIMO Receiver Processing (5G)

Hardware: Xilinx RFSoC ZCU 111

- Integrates multi gigasample RF data converters and soft decision forward error correction (SD FEC) into an SoC architecture.
 - Optimal millimeter wave IF implementations.
 - Device variants with integrated LDPC SD FEC cores and high DSP density for 5G baseband
 - Up to 6GHz of direct RF bandwidth for 5G New Radio (5G NR) support

Baseband

Wireless Backhaul Throughput - Power - Form Factor

MIMO Related Calculations

- MIMO channel equalization
 - Power compensation
 - MIMO decoding
 - Beamforming
 - ...
- All matrix computations
 - QR, SVD, matrix multiplication

Partial Reconfiguration

Configuration Speed

	PCAP	ICAP
Processor	400MB/s	
DMA		82.1MB/s
BRAM		332.1MB/s

PR_time = 7.5MB / 400 = 18.75ms Almost 2 frames of LTE signal !!

Contributions

- Unified matrix multiplication, QR decomposition, SVD and in the same systolic array
 - Enables large arrays to be supported in hardware
- System is controlled by feeding instructions from an external coprocessor:
 - Low latency for switching between applications -- just change instructions
- Two different arithmetic formats :
 - Floating-point design can process data with a large dynamic range
 - Fixed-point design uses fewer resources and is faster
- System is designed in Simulink
 - Code automation can incorporate floating-point IP cores from any source
- Designs presented have been implemented on Xilinx RFSoC ZCU 111

QR Dependence Graph

SVD Dependence Graph

Matrix Multiply DG

Calculation of SVD and QR

One-sided Jacobi method for SVD

Givens rotation for QR

$$\begin{bmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$
Re

$$\begin{cases} \phi = \operatorname{angle}(c), \theta = \arctan\left(\frac{b-a}{|c|}\right) & \text{SVD} \\ \phi = \operatorname{angle}(x_1), \theta = -2\arctan\left(\frac{x_1}{y_1}\right) & \text{QR} \end{cases}$$

$$a = \mathbf{X}^T \mathbf{X}, b = \mathbf{Y}^T \mathbf{Y}, c = \mathbf{X}^T \mathbf{Y}$$

Matrix Multiply(semi-broadcast)

Unified Systolic Array

	Operation	Data Flow Directions	Broadcast Data	Pipeline Data	PE Usage
SVD	Rotate Multiply	Two	Rotation Angle	Matrix Element	Full
QR	Rotate	One	Rotation Element	Matrix Element	Half
ММ	Multiply	One	Matrix Element	Matrix Element	Full

System Structure

MAC unit with register file

Register File

- Matrix multiplication
- Vector projection
- Rotation

Commonly Used Instructions

Load Operation	Load Data Registers Load Broadcast Register	
Arithmetic Operation	Matrix Multiplication Plane Rotation Diagonal Multiplication	
Data Flow Operation	Matrix Multiplication Flow SVD Flow QR Decomposition Flow	

Example Program: One-sided Jacobi SVD

```
LOAD DATA
                           # load matrix to data reg
     LOAD BROADCAST
                           # data to broadcast reg
     IP CAL
                           # compute inner product
     LOAD BROADCAST
                           # data to broadcast reg
     CP CAL
                           # compute cross product
wait for angle calculator ... completion signal triggered
                           # load complex angle value
     LOAD BROADCAST
     ROTC CAL
                           # complex angle rotation
     LOAD BROADCAST
                           # load Givens rotation value
                           # rotate the first row
     ROTO CAL
     ROT1 CAL
                           # rotate the second row
     LOAD DATA
                           # load rotated data
     INT DATA
                           # swap data between PEs
     JP LP
                           # jump to LP ... until convergence
```

Arithmetic

- Choice of floating point or fixed point when building the hardware design
- Floating Point:
 - IEEE Single precision using Xilinx IP cores
 - Easy to substitute another IP library
- Fixed point:
 - 8 × 8 version uses 25 bits, 18 fractional
 - 16 × 16 version uses 27-bit fixed-point

Relative Error Floating Point

- SVD 8 x 8 and 16 x 16 designs
 - Compared to MATLAB SVD (double precision floats)

Relative Error: 8x8 Matrix Mult

Tool Flow

Hardware Performance

		SVD Iteration Clock Cycles	QR Rotation Clock Cycles	Matrix Mul Clock Cycles
8x8	Fixed Point	159	159	3
	Floating Point	383	265	11
16x16	Fixed Point	169	169	3
	Floating Point	399	265	11

Resources and Clock Speed

		LUT	FF	LUTRAM	DSP	Clock (MHz)
8x8	Fixed Point	9.75%	5.8%	0.1%	6.2%	380
	Floating Point	21.5%	18%	2.3%	17.6%	374
16x16	Fixed Point	33.7%	20.6%	0.2%	24.7%	250
	Floating Point	72.5%	61.5%	9.9%	65.5%	250

HW vs SW time in seconds

	sw	HW		
		Fixed	Float	
SVD 8x8	3.7 x 10 ⁻⁴	1.6 x 10 ⁻⁵	3.8 x 10 ⁻⁵	
SVD 16x16	1.7 x 10 ⁻³	4 x 10 ⁻⁵	9.6 x 10 ⁻⁵	
QR 4x4	7 x 10 ⁻⁶	4.25 x 10 ⁻⁶	7.1 x 10 ⁻⁶	
QR 8x8	1.6 x 10 ⁻⁵	1.1 x 10 ⁻⁵	1.6 x 10 ⁻⁵	

SVDs per second

QRs per second

Not as good as SVD. Only using half the array Northeastern

Conclusions

- SVD, QR and Matrix Multiply implemented on a single FPGA design
- Change function by changing instructions
 - Low latency switching between tasks
- Can support many different wireless and MIMO tasks on the same FPGA
- Partial reconfiguration is NOT an option:
 - Bitstream for 8x8 design is 33.5 Mb, 60 ms to reconfigure

Future Directions

- Currently, hardware is implemented on the FPGA fabric of an RFSoc
- Next steps
 - Connect to the RF Frontend
 - Demonstrate MIMO applications and processing chain

Publications and Thank You

- Jieming Xu's PhD: Accelerating Matrix Processing for MIMO Systems. Available: https://repository.library.northeastern.edu/files/neu:m046v333b
- Mohamed, M., Handagala, S., Xu, J., Leeser, M. and Onabajo, M., 2020. Strategies and demonstration to support multiple wireless protocols with a single RF front-end. *IEEE* Wireless Communications, 27(3), pp.88-95.
- Xu, J. and Leeser, M., 2018, September. High-level and compact design of cross-channel LTE downlink channel encoder. In *International Conference on Cognitive Radio Oriented Wireless Networks* (pp. 15-24). Springer, Cham.

https://www.northeastern.edu/rcl/

Thank you:

Open Cloud Testbed: Edge to Cloud

- Tools run on MOC
- Eight Alveo U280s in Cloudlab
- Both MOC and Cloudlab are in MGHPCC
- User accounts will be available later this summer

