
© Copyright 2021 Xilinx

James Thomas, Chris Lavin, Alireza Kaviani
Stanford University and Xilinx Research Labs

Software-like Compilation for
Datacenter FPGA Accelerators

© Copyright 2021 Xilinx

1980 1985 1990 1995 2000 2005 2010 2015

2x/
20 years

1

10

100

1000

10000

100000

CISC
2x/3.5yrs

RISC
2x/1.5yrs

Dennard
Scaling

Multicore
2x/3.5yrs

Amdahl’s
Law

2x/6yrs

“A New Golden Age of Computer Architecture”, Hennessy & Patterson, Turing Lecture

Pe
rfo

rm
an

ce
 v

s V
ax

11
-7

80
A New Age of Domain-specific Computing

Hennessy & Patterson

©

© Copyright 2021 Xilinx

Rise of FPGAs in the Datacenter

˃ Large amount of interest from Amazon, Microsoft, and others

˃ Many massively parallel datacenter workloads that should work well on FPGAs

˃ But difficult for software programmers to harness them

>> 3

© Copyright 2021 Xilinx

Common Pattern in Datacenter FPGA Designs

˃ Many identical processing units (PUs)

˃ Some sort of “memory controller” to facilitate communication among the processing units
and to DRAM (data analytics, machine learning, etc.)

Memory
Controller

Host
Interface

PU

Inter-
connect

PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

Domain Connectivity

>> 4

© Copyright 2021 Xilinx

Fleet Computing Domain

˃ As an example, I previously worked on a system called Fleet in the data analytics / stream
processing domain

˃ Included a DSL for PUs and targeted Amazon F1

PU 1
Output

Input
Stream

Ctrl

PU 2
Output

PU …
Output

PU 1
Input

PU 2
Input

PU …
Input DDR

Programmable
Logic

PU 1

PU 2

PU ...

Output
Stream

Ctrl

>> 5

© Copyright 2021 Xilinx

Fleet: Good Performance, Slow Compilation
Application # of PUs vs. CPU Perf/W vs. GPU Perf/W
JSON Parsing 512 26x 5.4x
Integer Coding 192 45x 2.7x
Decision Tree 384 14x 0.4x
Smith-Waterman 384 275x 5.8x
Regex 704 60x 2.6x
Bloom Filter 320 15x 6.7x

App
Code

Fleet
& Chisel
Compiler

30-60 seconds 8-12 hours *per try* 30-60 minutes

.bit

StreamRTL / Chisel

(Synthesis, P&R)
Ingestion

Flow

Verilog
(.v)

P&R
Design
(.dcp)

Fleet: A Framework for Massively Parallel Streaming on FPGAs, ASPLOS 2020
>> 6

© Copyright 2021 Xilinx

Datacenter FPGA App Compilation

˃ Memory controller often doesn’t change much for a class of applications – wasted work in
redoing its place and route for each app

˃ Processing units identical – significant wasted work in redoing place and route for each
one

˃ How can we avoid redoing work?

PU

PU

PU

PU

PU

PU

PU

Mem. Control.

PU

PU

>> 7

© Copyright 2021 Xilinx

Domain Specific Era Needs Domain Specific Backends

CIRCUITS IN SECONDS

Application Domains

A B

Vivado must generalize solutions RapidWright can specialize

˃ Exploit domain-specific traits for:
Higher performance
Faster compile time
Timing closure predictability

>> 8

© Copyright 2021 Xilinx

FPGA specialist
community

Traditional flows:
Applications in all

Domains

Fleet Domain-Specific Compiler

Developers

Application
architects

Back-end
compiler

Front-end
Compiler

High abstraction
domain-specific
Fleet language

Relocate pre-
implemented
operators and

functions

Customized
open-source
frameworks

>> 9

© Copyright 2021 Xilinx

Goal

˃ Fast compilation by:
Reusing compilation for replicated PUs
Take memory controller (shell) from a pre-implemented library

>> 10

© Copyright 2021 Xilinx

Simple Solution: Vivado Out-of-context Flow

Pre-
implemented
memory
controller
(shell)

Replicated
PUs

>> 11

© Copyright 2021 Xilinx

Issue: Shell-to-PU Routing

˃ Problem: Vivado routing from replicated PUs to shell takes time (1-2 hours or more)

˃ Solution: Shell is pre-implemented, so route it to a register block next to each PU location
(“slot”) ahead of time

Use two connected columns of registers & pblocks to ensure shell routes don’t cross into PU
slots

>> 12

© Copyright 2021 Xilinx

Example Shell

˃ Slot resource layout can be different per slot column (but resource counts are same) –
requires separate implementations

>> 13

© Copyright 2021 Xilinx

Online PU Flow

˃ Generate PU implementation for each slot column & replicate implementations

>> 14

© Copyright 2021 Xilinx

Results

>> 15

© Copyright 2021 Xilinx

180-Slot Shell

>> 16

© Copyright 2021 Xilinx

Area Tradeoff

˃ Previously able to get 500+ PU’s with standard flow

˃ Still have room to add more slots

˃ Can still beat GPU with 180 PU’s in some cases, may be enough for some users

˃ For others, this can be a fast flow for prototyping, can use standard flow once design is
finalized

>> 17

© Copyright 2021 Xilinx

Retrospective on Vivado

˃ Vivado needs to start up/run more quickly for faster online flow

˃ Needs more low-level APIs to precisely control behavior
Could do something simpler/more direct than using register block for shell/PU isolation

˃ RapidWright achieves both goals but needs its own placer/router/etc. to be on par with
Vivado

>> 18

© Copyright 2021 Xilinx

Additional Speedup with Open-Source Tools

>> 19

© Copyright 2021 Xilinx

Conclusion

˃ Fast compilation system for modular datacenter designs (~10x speedup)

˃ Open source at https://github.com/jjthomas/Fleet-Floorplanning

>> 20

https://github.com/jjthomas/Fleet-Floorplanning

