
© Copyright 2021 Xilinx

James Thomas, Chris Lavin, Alireza Kaviani
Stanford University and Xilinx Research Labs

Software-like Compilation for 
Datacenter FPGA Accelerators



© Copyright 2021 Xilinx

1980            1985            1990             1995             2000            2005             2010            2015

2x/ 
20 years

1

10

100

1000

10000

100000

CISC
2x/3.5yrs

RISC
2x/1.5yrs

Dennard
Scaling

Multicore
2x/3.5yrs

Amdahl’s
Law

2x/6yrs

“A New Golden Age of Computer Architecture”, Hennessy & Patterson, Turing Lecture 

Pe
rfo

rm
an

ce
 v

s V
ax

11
-7

80
A New Age of Domain-specific Computing

Hennessy & Patterson

©



© Copyright 2021 Xilinx

Rise of FPGAs in the Datacenter

˃ Large amount of interest from Amazon, Microsoft, and others

˃ Many massively parallel datacenter workloads that should work well on FPGAs

˃ But difficult for software programmers to harness them
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Common Pattern in Datacenter FPGA Designs

˃ Many identical processing units (PUs)

˃ Some sort of “memory controller” to facilitate communication among the processing units 
and to DRAM (data analytics, machine learning, etc.)
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Fleet Computing Domain 

˃ As an example, I previously worked on a system called Fleet in the data analytics / stream 
processing domain

˃ Included a DSL for PUs and targeted Amazon F1
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Fleet: Good Performance, Slow Compilation
Application # of PUs vs. CPU Perf/W vs. GPU Perf/W
JSON Parsing 512 26x 5.4x
Integer Coding 192 45x 2.7x
Decision Tree 384 14x 0.4x
Smith-Waterman 384 275x 5.8x
Regex 704 60x 2.6x
Bloom Filter 320 15x 6.7x
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Datacenter FPGA App Compilation

˃ Memory controller often doesn’t change much for a class of applications – wasted work in 
redoing its place and route for each app

˃ Processing units identical – significant wasted work in redoing place and route for each 
one

˃ How can we avoid redoing work?
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Domain Specific Era Needs Domain Specific Backends

CIRCUITS IN SECONDS

Application Domains

A B

Vivado must generalize solutions RapidWright can specialize

˃ Exploit domain-specific traits for:
Higher performance
Faster compile time
Timing closure predictability
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Goal

˃ Fast compilation by:
Reusing compilation for replicated PUs
Take memory controller (shell) from a pre-implemented library
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Simple Solution: Vivado Out-of-context Flow
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Issue: Shell-to-PU Routing

˃ Problem: Vivado routing from replicated PUs to shell takes time (1-2 hours or more)

˃ Solution: Shell is pre-implemented, so route it to a register block next to each PU location 
(“slot”) ahead of time

Use two connected columns of registers & pblocks to ensure shell routes don’t cross into PU 
slots
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Example Shell

˃ Slot resource layout can be different per slot column (but resource counts are same) –
requires separate implementations
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Online PU Flow

˃ Generate PU implementation for each slot column & replicate implementations
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Results
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180-Slot Shell
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Area Tradeoff

˃ Previously able to get 500+ PU’s with standard flow

˃ Still have room to add more slots

˃ Can still beat GPU with 180 PU’s in some cases, may be enough for some users

˃ For others, this can be a fast flow for prototyping, can use standard flow once design is 
finalized
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Retrospective on Vivado

˃ Vivado needs to start up/run more quickly for faster online flow

˃ Needs more low-level APIs to precisely control behavior
Could do something simpler/more direct than using register block for shell/PU isolation

˃ RapidWright achieves both goals but needs its own placer/router/etc. to be on par with 
Vivado
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Additional Speedup with Open-Source Tools
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Conclusion

˃ Fast compilation system for modular datacenter designs (~10x speedup)

˃ Open source at https://github.com/jjthomas/Fleet-Floorplanning
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